Diabetic Peripheral Neuropathy

Healthy Nerves and Blood Vessels

Nerves and Blood Vessels Damaged by DPN

Lessons Learned from Failed Clinical Trials in Diabetic Neuropathy

Aaron I. Vinik, MD, PhD, FCP, MACP
Professor of Medicine/Pathology/Neurobiology
Director of Research and Neuroendocrine Unit
Eastern Virginia Medical School
Strelitz Diabetes Center for
Endocrine and Metabolic Disorders
Norfolk, Virginia

NOT a Single Homogenous

And What We Mistake for Diabetic Neuropathy

- Claudication
- Morton's neuroma
- Osteoarthritis
- Radiculopathy
- Plantar fasciitis
- Fibromyalgia
- Tarsal tunnel syndrome

Why have we Failed to Demonstrate Efficacy of Therapy in Diabetic Neuropathy

- Interventions are not efficacious;
- Present diabetes care inhibits development of complications;
- Other diabetic complications (hypertension, hyperlipidemia, renal disease, and other) with possible adverse effects on DSPN are now managed better;
- The wrong kind, stage, duration, speed of evolution of DSPN is studied;
- **End points chosen are** insufficiently sensitive, specified, fmontoto reital Diabetes Care 30:2 թեւ ան Հայուսին al treatment while

- **Combining measures of small** and large fiber function may obscure an effect on one or other
- Translating (measuring a consistent trend of worsening or improvement with time) to many medical centers hazardous
- Excessive recruitment of type 2 diabetic patients showing little change with time and excessive variability of measured end points
- Both placebo and treated patients receive better than

Glycemic Control in Type 1 Diabetes Prevents Neuropathy

The Diabetes Control and Complications Trial Research Group. *N Engl J Med* 1993;329:977. Copyright © 1993 Massachusetts Medical Society. All rights reserved.

Epidonnology of didbottos into volition

and complications (EDIC) study in type 1 diabetes

8-year follow-up of polyneuropathy (MNSI >2) after DCCT completion (n=1398)

DCCT, diabetes control and complications trial MNSI, Michigan neuropathy screening instrument

Martin et al. Diabetes Care, 2006; 29:340 Leroith, Fonseca, Vinik, 2006

Neuropathy in Prediabetes: Does the Clock Start Ticking Earlier than Diabetes

IFG = impaired fasting glucose; IGT = impaired glucose tolerance

Ziegler et al. Papanas, Vinik and Ziegler Nature reviews. Endocrinology 2011;7(11):682-90.

Neuropathy: Disease Initiation/Progression

Genetics

CHT1
APoE4/lipids
AR Z2 alleles
ACE polymorphism
Toll rec polymorphism
Catalase 262T>C
Initiating
Event

GLYCATION

AGEs

Neuronal Injury

EPIGENETIC

PARPs etc

Functional Changes

Progressive Pathological Changes

INFLAMMATION

Oxidative/Nitrative

Stress

PKC, 12LO/5LO, HETE

Selectins

VCAMS

IL6, TNF α , NF κ B

ROS, nitrotyrosines

months to years

Modified from Vinik and Mehrabyan. Med Clinics North America 2004

Vinik, Ullal, Casellini Nature Clinical Practice 2(4), 2006, Vinik, Strotmeyer, 2012

Diabetic neuropathy: cellular mechanisms as therapeutic targets

Drug	Proposed mechanism	Preclinical studies	Clinical trial results
Aleglitazar	Dual PPARα/γ agonist	In rats, decreased plasma glucose and LDL cholesterol levels; increased glucose clearance and HDL cholesterol levels; improved insulin resistance ¹²⁰	Reduced glycemia in phase II trials; currently in phase III trial for diabetic cardiovascular end points ¹²¹
L-arginine	Improves circulation in microvessels	Produces vasodilation of isolated vessels of all species ¹²²	No effect on endothelial function or neuropathy score ¹²³
Zenarestat, epalrestat, ranirestat, fidarestat and five related compounds	Aldose reductase inhibitors	Zenarestat prevented abnormal neurotrophin receptor expression; ¹²⁴ fidarestat prevented oxidative stress and neuropathy in diabetic rats ¹²⁵	Epalrestat is well-tolerated long term ^{126,127} and approved in Japan; ¹²⁸ most compounds and pain scores; ranirestat seems to improve motor nerve function in mild to moderate disease; ¹²³ fidarestat showed some adverse effects in long-term treatment ³³
α-Lipoic acid	Antioxidant; pyruvate dehydrogenase activator; other unknown mechanisms	Improved nerve and cardiac disorders in diabetic rats ¹²⁹	Approved for standard of care in Germany; ⁷⁷ some evidence that the compound decreases oxidative stress, ¹³⁰ prevents AGE formation ¹³¹ and improves neuropathic deficits; US trials remain inconclusive ¹³²
Actovegin	Increases cellular metabolism through an unknown mechanism; increases glucose and oxygen uptake and use; increases ATP turnover	Improved brain metabolic defects in rats with experimental stroke ¹³³	Sequential intravenous and oral delivery over 160 days improve neuropathic symptoms, vibration perception threshold, sensory function, and quality of life ¹³⁴
Fibrates	Lipid lowering	Fenofibrate improves insulin sensitivity ¹³⁵ and other parameters that affect neuropathy, such as vascularization ¹³⁶ and lipid metabolism	Clofibrate decreases neuropathy; ¹³⁸ fenofibrate decreases eye and kidney complications; ¹³⁸ fenofibrate decreases risk of amputation in patients with diabetes but without macrovascular disease ¹³⁹

Factors Affecting Responses to Epalrestat

Hotta, N et al. *Diabetic Medicine*, 25, 818-825, 2008

Amelioration of symptoms and change in median motor nerve conduction velocity (MNCV) after 3 years) of Epalrestat

Logistic Regression Analysis of the Efficacy of Epalrestat vs. Control

Diabetic neuropathy: cellular mechanisms as therapeutic targets (Page 2)

Drug	Proposed mechanism	Preclinical studies	Clinical trial results
Gabapentin	GABA analogue that blocks new synapse formation ¹⁴⁰	No preclinical data or known mechanisms; use of anticonvulsants based on similarities between pathophysiology of diabetic neuropathy and epilesy ¹⁴¹	Blocks pain and improves symptoms of cardiac autonomic neuropathy ¹⁴²
Acetyl-L- carnitine	Restoring possibly depleted levels in diabetes; required for mitochondrial function	Improved blood flow and sciatic motor nerve conduction velocity in rats with type 1 diabetes ¹⁴³	Early treatment may decrease pain; one of two large studies suggested improvement in NCV and nerve regeneration ¹⁴⁴
Pentoxifylline and pentosan polysulphase	Improves circulation in microvessels by blocking phosphodiesterase; antioxidant	Cliastazol, another phosphodiesterase inhibitor, improved NCV in rats with type 1 diabetes ¹⁴⁵ but was ineffective in humans ¹⁴⁶	In combination, these compounds improved cardiovascular autonomic function and vibration perception in type 2 diabetes ¹⁴⁷
Benfotiamine	Blocks AGE formation	Decreased AGE levels and diabetic complications in rats ^{148,149}	Reviews propose testing in patients, but clinical trials have not been instigated ^{40,41}
C –peptide	Lacking in type 1 diabetes; binds to a G protein-coupled receptor and alters metabolism ¹⁵⁰	Improved blood flow and early neuropathy in rats with type 1 diabetes ^{151,152}	Short-term use (<3 months) decreased early evidence of NCV slowing, sensory deficits and autonomic neuropathy in patients with type 1 diabetes ¹⁵³
Nerve growth factor	Neurotrophic factor	Decreased neuropathy in rats ¹⁵⁴ and mice; ¹⁵⁵ however, the endogenous form may be responsible for pain in neuropathy ¹⁵⁶	Some efficacy against sensory deficits, but produced painful adverse effects ^{157,158}
Ruboxistaurin	Akt inhibitor	Decreased microvascular complications in rodents ¹⁵⁹	Seems to be effective against diabetic retinopathy, but no effect on neuropathy in phase III trials ¹⁶⁰
Basic fibroblast growth factor	Stimulates angiogenesis and nerve cell regeneration	Intravenous administration in rats modestly improves blood flow, NCV deficits and hypoalgesia ¹⁶¹	Not determined

Diabetic Neuropathies: Update on Definitions, Diagnostic Criteria, Estimation of Severity, and Treatments

"The antioxidant α -lipoic acid administered i.v. is the only pathogenetic treatment that has efficacy confirmed from several randomized controlled trials and confirmation in a meta-analysis (level A evidence)."

Efficacy of Alpha Lipoic Acid in the NATHAN 4y Trial

Study Design and Results

- 460 patients with mild to moderate DSPN ,
- DBPC multicenter trial
- Failed to meet primary endpoint NISLL + 7
- Improved NIS (p0.028), NIS-LL (p=0.05) and more responded (NIS (p=0.013) and NISLL (p=0.025)
- Nerve conduction and QST did not deteriorate in placebo

Conclusions

- The first and longest trial in DSPN
- Four year treatment with ALA failed to achieve primary endpoint
- Clinically meaningful improvements and arrest of progression of neuropathy impairment
- Because primary endpoints did not deteriorate in placebo secondary prevention not possible

The Ideal Endpoint . . .

- Relevant to the disease and the population under investigation – correlates with "clinically meaningful" symptoms/signs/outcomes.
 - Direct assessment of axon number and function
- Reproducible
- Respon
- Biolog
 Can we fulfill
- Accep all of the above? munity, regulato.

Neuropathy Impairment Score

- Most widely used quantitative assessment in diabetic polyneuropathy
 - Lower Limb only (NIS-LL) (score 0-88)
 - Components tested

Muscle Power (0-64)

• Sensation (0-16)

• Reflexes (0-8)

- Correlates with disease severity in DPN
- NIS-LL increases by 0.9 points/year in DPN
- NIS-LL increase of 2 points clinically significant*

Summated (Σ) Scores of Neurophysiologic Function

Σ 7 – Primarily Large Fiber

- Vibration detection threshold
- Heart rate variability with deep respiration
- Nerve conduction studies
 - Peroneal
 - Tibial nerve
 - Sural nerve

Σ 3 Small fiber function

- Cooling detection threshold
- Heat pain threshold
- Heart rate variability with deep respiration

Challenges in Design of Multicenter Trials in DPN

Comparison of outcomes in:

- Rochester observational study
- Viatris (Alpha Lipoic Acid) trial
 - Ruboxistaurin trial

Reproducibility of neuropathic end point measurements at onset of Viatris and Lilly controlled clinical trials of DSPN

ICC

	Viat	ris	Lilly			
	First and second exam	First and third exam	First and second exam	First and third exam		
Ankle reflexes (0-4 pts)	0.82	0.80		0.83		
Great toe vibration (0-4 pts)	0.77	0.73	_	0.88		
NIS(LL) (pts)	0.82	0.82		0.89		
NSC(LL) severity (pts)		0.80		0.81		
Σ DCCT criteria (0–12 pts)		0.77	OCCUPATION OF A PERSONNEL A	0.88		
Peroneal motor CV nd	0.85	0.85	0.84	0.80		
Tibial motor DL nd	0.66	0.53	0.66	0.70		
Sural SNAP nd	0.91	0.87	0.69	0.65		
Σ 5 NC tests nd	0.84	0.82	0.78	0.80		
VDT nd	0.73	0.76	0.67	0.58		
CDT nd	0.86	0.86	<u></u>			
HP:5 nd	0.84	0.83	_			
Σ 3 QST tests nd	0.85	0.85				
HRDB nd	0.81	0.83	0.72	0.73		

Abbreviations are given in Table 1. Additional abbreviations: CDT, cooling detection threshold using CASE IV; HP:5, heat pain 5, severity of the pain experience from 1 (least) to 10 (most).

Dyck et al Diabetes Care 30:2619-2625, 2007

Median regression slopes (b̄) of NIS (LL) ≥ 2 points over time in the Rochester, Viatris, and Lilly cohorts using different criteria for the diagnosis of polyneuropathy

	Roches	Rochester		S	Lilly		
Cohort	b per 4 years	P*	b per 4 years	P	b̄ per year	P	
Entry criteria			NIS(LI	.) ≥2 points			
Number of patients (mode)	83		191		23	4	
Ankle reflexes† (0–4 pts)	-0.35	0.02	-0.27	< 0.01	0.24	0.73	
Great toe vibration† (0–4 pts)	0.40	< 0.01	0.12	0.30	-0.25	< 0.01	
NIS(LL)† (pts)	0.82	0.99	0.16	0.81	0.35	0.02	
NSC(LL) severity† (pts)	-0.13	0.29	-0.52	0.23	-3.27	< 0.01	
Σ DCCT criteria† (0–12 pts)	-0.21	0.21	-0.27	0.10	-0.38	< 0.01	
Peroneal motor CV nd	0.08	0.33	-0.00	0.54	0.05	0.05	
Tibial motor DL nd	-0.11	0.27	-0.10	0.09	-0.04	0.10	
Sural SNAP nd	0.23	< 0.01	+0.00	0.05	0.14	< 0.01	
Σ 5 NC tests nd	-0.20	0.44	-0.21	0.05	0.29	0.05	
VDT (CASE IV) nd	0.53	0.02	+0.00	0.34	-0.40	< 0.01	
Σ 3 QST nd	2.48	< 0.01	-0.28	0.02			
HRDB nd	+0.00	0.67	0.05	0.55	0.10	0.13	

Median regression slopes (b) of Σ 5 NC tests nd ≥ 95th over time in the Rochester, Viatris, and Lilly cohorts using different criteria for the diagnosis of polyneuropathy

	Rochester		Viatris	5	Lilly		
Cohort	b per 4 years	P*	b per 4 years	P	b̄ per year	P	
Entry criteria	∑ 5 NC tests nd ≥95th						
Number of patients (mode)	108		191		130)	
Ankle reflexes† (0–4 pts)	-0.10	0.28	-0.27	< 0.01	-1.22	0.07	
Great toe vibration† (0–4 pts)	0.38	< 0.01	0.12	0.30	-0.08	0.42	
NIS(LL)† (pts)	1.04	0.03	0.16	0.81	-1.42	0.07	
NSC(LL) severity† (pts)	0.05	0.78	-0.52	0.23	-2.38	< 0.01	
∑ DCCT criteria† (0–12 pts)	0.17	0.28	-0.27	0.10	-1.73	< 0.01	
Peroneal motor CV nd	0.14	0.83	-0.00	0.54	+0.00	0.82	
Tibial motor DL nd	-0.38	< 0.01	-0.10	0.09	-0.07	0.05	
Sural SNAP nd	0.11	0.03	+0.00	0.05	0.11	0.03	
Σ 5 NC tests nd	-0.52	0.08	-0.21	0.05	-0.37	0.26	
VDT (CASE IV) nd	0.38	0.01	+0.00	0.34	-0.52	< 0.01	
∑ 3 QST nd	2.10	< 0.01	-0.28	0.02			
HRDB nd	+0.00	0.66	0.05	0.55	0.04	0.50	

Median regression slopes (b) of DCCT ≥ 2 of 3 criteria over time in the Rochester, Viatris, and Lilly cohorts using different criteria for the diagnosis of polyneuropathy

	Rochester		Viatri	S	Lilly		
Cohort	b per 4 years	P*	b per 4 years	P	b̄ per year	P	
Entry criteria		DCCT ≥2 of 3 criteria					
Number of patients (mode)	30		187		222	2	
Ankle reflexes† (0–4 pts)	-0.11	0.97	-0.28	< 0.01	0.26	0.73	
Great toe vibration† (0–4 pts)	-0.07	0.90	0.10	0.37	-0.27	< 0.01	
NIS(LL)† (pts)	0.90	0.48	0.04	0.89	0.63	0.04	
NSC(LL) severity† (pts)	-0.28	0.15	-0.55	0.21	-3.35	< 0.01	
Σ DCCT criteria† (0–12 pts)	-0.54	0.21	-0.31	0.07	-0.39	< 0.01	
Peroneal motor CV nd	0.94	0.56	-0.00	0.51	0.05	0.05	
Tibial motor DL nd	-0.09	0.59	-0.09	0.12	-0.05	0.05	
Sural SNAP nd	0.10	0.34	+0.00	0.05	0.12	< 0.01	
Σ 5 NC tests nd	0.05	0.57	-0.16	0.07	0.28	0.09	
VDT (CASE IV) nd	0.52	0.12	+0.00	0.36	-0.38	< 0.01	
∑ 3 QST nd	2.14	0.01	-0.28 0.02				
HRDB nd	-0.00	0.98	0.05	0.50	0.08	0.14	

The Plague of the Placebo

- Using "drop in" drugs
- Progression of small fiber changes vs. static changes in large fiber function.
 - The multicenter Ruboxistaurin Trial

Patient baseline characteristics

Characteristic	Placebo
n	262
Female sex	147 (56.1)
Type 1 diabetes	68 (26.0)
Age (years)	48.1 ± 9.4
Caucasian	207 (79.0)
BMI (kg/m ²)	30.0 ± 6.5
A1C (%)	$\textbf{7.6} \pm \textbf{1.4}$
Used insulin	159 (60.7)
Duration of diabetes (years)	$\textbf{11.4} \pm \textbf{9.2}$
Duration of neuropathy (years)	2.7 ± 2.8
Statin medication use	68 (26.0)
Chronic symptom medication use	38 (14.5)
Antihypertensive medication use	157 (59.9)
ACE inhibitor or ARB use	131 (50.0)

Baseline to end point change at 1 year in placebo-administered patients

Characteristic	Baseline	Baseline to end point improvement	P value
NTSS-6 total score (points)	9.76 ± 3.8	3.73 ± 3.8	< 0.001
NIS[LL] (points)	6.95 ± 5.0	0.63 ± 3.4	0.005
Quantitative sensory testing (JND units)	20.43 ± 2.1	0.42 ± 2.1	0.003
		Baseline to end point worsening	
HRDB (inspiration - expiration) (beats/min)	11.92 ± 6.7	0.78 ± 3.9	0.003
Peroneal NCV (m/s)	43.05 ± 4.9	0.38 ± 2.2	0.012
Tibial F-wave latency (ms)	54.93 ±6.1	0.33 ± 2.4	0.045
Sural amplitude (µV)	9.10 ± 5.3	1.12 ± 3.7	< 0.001
Sural peak latency (ms)	3.95 ±0.49	0.058 ± 0.37	0.021
A1C (%)	7.58 ± 1.4	0.28 ± 1.2	P < 0.001

Patient characteristics that impact clinically significant improvement in neuropathic symptoms

Characteristic	Symptom improvement ≥ 50%	No symptom improvement <50%	P value
Baseline NTSS-6 total score (points)	9.17 ± 2.87	10.19 ± 3.58	0.0168
Baseline NIS[LL] (points)	6.45 ± 4.25	7.31 ± 5.41	0.1714
NIS[LL] changes from baseline (points)	-1.21 ± 3.37	-0.21 ± 3.41	0.0277
Baseline NIS[LL] + 7 (points)	13.28 ± 5.99	15.26 ± 7.17	0.0219
NIS[LL]+7 change from baseline (points)	0.027 ± 7.7	2.51 ± 12.7	0.0969
Baseline VDT (JND units)	20.00 ± 2.06	20.71 ± 2.07	0.0087
VDT change from baseline (JND units)	-0.582 ± 2.39	-0.304 ± 1.87	0.3228
Baseline peroneal NCV (m/s)	43.34 ± 4.96	42.85 ± 4.90	0.4273
Peroneal NCV change from baseline (m/s)	0.015 ± 2.32	-0.674 ± 2.15	0.0260
Baseline tibial F-wave latency (ms)	54.54 ± 6.19	55.20 ± 6.06	0.3939
Tibial F-wave latency change from baseline (ms)	0.285 ± 2.66	0.362 ± 2.21	0.8165
Baseline sural amplitude (µV)	10.19 ± 5.44	8.34 ± 5.13	0.0076
Sural amplitude change from baseline (µV)	-1.23 ± 3.55	-1.04 ± 3.76	0.6985
Age (years)	46.30 ± 9.15	49.28 ± 9.36	0.0128
Baseline BMI (mg/kg²)	29.07 ± 7.14	30.67 ± 5.95	0.0528
Baseline SBP (mmHg)	124.22 ± 14.21	128.26 ± 15.68	0.0361
Type 1 diabetes	33 (31.1)	34 (21.9)	0.0962
Baseline chronic symptom medication use	9 (8.5)	29 (18.7)	0.0248
Baseline antihypertensive medication use	56 (52.8)	101 (65.2)	0.0464
Baseline statin use	21 (19.8)	47 (30.3)	0.0591

Translating Phase 2 to Phase 3 and from Single to Multicenter Trials

the Neuropathy Total Symptom Score-6 (NTSS-6) total score in 83 patients with symptomatic diabetic peripheral neuropathy

RBX 32 mg (n = 22)
RBX 64 mg (n = 26)
Placebo (n = 35)

*Negative change indicates improvement; †p=0.012 versus placebo; †p=NS versus placebo; §p=0.015 versus placebo.

The effect of ruboxistaurin (RBX) mesylate on the change in Neuropathy Total Symptom Score-6 (NTSS-6) total score for patients with less severe and symptomatic diabetic peripheral neuropathy (DPN)

Clinically significant improvement was defined as NTSS-6 score reductions ≥2.
(A) Symptomatic DPN patients (ie, NTSS-6 total score >6; 83 of 205 patients).
(B) Patients with mild, early symptomatic DPN (ie, NTSS-6 total score >6, detectable sural sensory nerve action potential; 50 of 205 patients).

^{*}p=0.049 versus placebo; †p=0.032 versus placebo; ‡p=0.004 versus placebo.

The effect of ruboxistaurin (RBX) mesylate on vibration detection threshold (VDT)

- (A) Patients with mild, early symptomatic diabetic peripheral neuropathy (DPN) (ie, detectable sural sensory nerve action potential; 50 of 205 patients).
- **(B)** Correlation between change in Neuropathy Total Symptom Score-6 (NTSS-6) total score and the change in VDT (r=0.322, p=0.033; 50 of 205 patients).

JND = just noticeable difference; *p=0.012 versus placebo; †p=0.026 versus placebo.

Small fiber measures have greater diagnostic sensitivity

IENF Loss in Small Fiber Neuropathy

Control

Metabolic Syndrome

Diabetes

Vinik AI, et al. Nature Clinical Practice Endocrinol Metab. 2006;2:269-281.

Pittenger, Burcus, McNulty, Basta, Vinik. Diabetes Care 27:1974-79, 2004;

Pittenger, Mehrabyan, Simmons, Rice, Dublin, Barlow, Vinik, Metab. Syndrome 3:113-121, 2005

Small Fibers have Greater Plasticity and Regrow Upon Stimulation

Before Topiramate

After Topiramate

Boyd, Barlow, Pittenger, Simmons, Vinik Diabetes, Metabolic Syndrome and Obesity 2010

Improvement in Endpoints in Ruboxistaurin and Topiramate Treated Subjects

	Cabjeoto						
QOL Domain	Placebo		RBX		TPX		
QOL Domain	Difference	p-value	Difference	p-value	Difference	p-value	
Total QOL	-5.56±3.49	NS	-9.56±-4.13	<0.04	-12.22±2.76	<0.001	
Symptoms	-0.28+/-0.82	NS	-2.27+/-0.81-	<0.004	-4.89+/0.88	<0.0001	
Large Fiber	-3.67+/-2.23	NS	-4.74+/-2.69	NS	-5.61+/-1.64	<0.05	
Small Fiber	-1.22+/-0.69	NS	-0.5+/-0.36	NS	-1.06+/-0.56	NS	
ADL	-0.39+/-0.50	NS	-1.06+/-0.62	NS	-0.61+/-0.54	NS	
Autonomic	0+/-0.29	NS	-0.56+/-0.38	NS	-0.06+/-0.26	NS	

Data is presented as mean (± SEM). Abbreviations: ADL, activities of daily living; QOL, Quality of life; RBX, ruboxistaurin; TPX, topiramate

Boyd, Casellini, Vinik, and Vinik. J Sci and Technology, 5: 714-722, 2011

Effects of Topiramate on Metabolic Parameters and Cognitive

Function

Variable	Baseline (Pre)	18 Weeks (Post)	Significance
Weight	228 <u>+</u> 11.9	220 <u>+</u> 12.3	p<.0001
BMI	32.5 <u>+</u> 1.2	31.3 <u>+</u> 1.3	p< .001
Diastolic BP	81 <u>+</u> 1.9	71 <u>+</u> 1.6	p <.0001
Systolic BP	143 <u>+</u> 4.1	122 <u>+</u> 3.1	p<.0001
HBA1c	7.4 <u>+</u> 0.31	6.8 <u>+</u> 0.20	p<.0001
Total Neuropathy Score	31.1 <u>+</u> 15.5	21.0 <u>+</u> 11.5	p= 0.0026
Touch Threshold	2.7 <u>+</u> 3.1	.45 <u>+</u> 1.4	P=0.004
Prickling Threshold	4.3 <u>+</u> 2.1	2.15 <u>+</u> 2.43	P=0.0008
Vibration Threshold	5.4 <u>+</u> 2.3	4.4 <u>+</u> 2.2	P=0.039

Lifestyle Intervention for Pre-Diabetic Neuropathy

Noninvasive Tests of Small Fiber Function

- Laser Doppler Flare or Blood Flow
- Corneal Confocal Microscopy
- Contact Heat or Laser Heat Evoked Potentials
- Sudorimetry
 - QSART
 - Sudoscan
- Quantitative Autonomic Function Tests

EURODIAB: Risk Factors for Incidence of Polyneuropathy

Odds ratios (95% CI); n = 1101 with type 1 diabetes; follow-up 7.3 \pm 0.6 years

Tesfaye S, et al. *N Engl J Med*. 2005;352:341-350.

STENO: Changes in Risk Factors in Intensive vs. Conventional Therapy Groups

■ Conventional therapy ■ Intensive therapy

Gaede et al NJEM 2003;348:383-394

Intensive Multifactorial Intervention in Type 2 Diabetes

C	Complication	Risk ratio (95% CI)	p valu	е				ı	
	1° Endpoint	0.47 (0.24 – 0.73)	0.008	_	_		_		53% risk reduction
ı	Nephropathy	0.39 (0.17 – 0.87)	0.003	_					61% risk reduction
1	Retinopathy	0.42 (0.21 – 0.86)	0.02	_	_				58% risk reduction
	Autonomic neuropathy	0.37 (0.18 – 0.79)	0.002	_	-				63% risk reduction
	Peripheral neuropathy	1.09 (0.54 – 2.22	0.66					+	
				0.2	0.4	0.6	8.0	1.0) 1.2 1.4 1.6 1.8

INTENSIVE better **CONVENTIONAL** better

1° endpoint: CVD death, non-fatal MI, CABG, PTCA, non-fatal stroke, amputation, any bypass Gaede P et al. *NEJM* 348:5, 2003. Leiter LA. Diabetes Res. Clin Practice.

The role for lipid lowering for microvascular complications.

Summary and Conclusions: Disease Modifying Failure in Diabetic Neuropathies

- Diabetic Neuropathies are heterogeneous and may involve small and large fibers, with damage to each fiber producing its own constellation of features and requiring their own endpoints
- Hyperglycemia control is clearly effective in prevention and development of neuropathy in Type1 diabetes and the rate of deterioration is monotonic
- Multiple metabolic imbalances underlie the development of diabetic neuropathy particularly in type 2 diabetes
 - Hyperglycemia, dyslipidemia, and cardiovascular dysfunction are each independent risk factors for neuropathy
- If patients without DPN are to be recruited for study—scores of NC and heart rate with deep breathing

Optimizing Trials for DPN

- Euglycemia improves responsiveness to ARIs prevents or ameliorates DSPN, do not select poorly controlled patients
- Patients with DPN use two attributes of NC and QSTs.
- Studies using large fiber measures need to be done for long times (4y) to show a treatment effect.
- Type 1 diabetic patients are preferable to type 2 diabetic patients because there is less variability of test results and polyneuropathy worsens to a greater degree and is monotonic
- The placebo effect of monotonic improvement of clinical signs and symptoms is of concern, ancillary adjunctive treatments patients in the placebo arm need to be controlled.
- Choose a restricted number of centers
 - and expert examiners, trained, certified, using standard approaches,
 - and reference values and interactive surveillance of tests) are used.

Small fibers may be more plastic and non invasive endpoints may prove better than current large fiber measures.

